
Akka Decision Engine

An actor based decision engine on the DMN 1.1

specifications

by

Mark Acda, Toon de Boer & Thomas Bos

for the degree of Bachelor of Science at Delft University of Technology

June 25, 2019

Project duration: April 23, 2019 - July 5, 2019
Thesis committee: Dr. C.B. Poulsen TU Delft supervisor

Ir. O.W. Visser TU Delft BEP instructor
H. Wang TU Delft BEP instructor
A. Hagens Finaps product owner

Preface

This report discusses the project we worked on for our Bachelor End Project
(BEP) at the TU Delft. We had the privilege to work on a new project at
Finaps, an IT company in Amsterdam. This project is to finalise our bachelor
and to test our skills that we have learned in the last three years.

When we got the instructions for the BEP, we decided that we wanted to
do it at a company to get the feeling of the business life after university and
in the hope that what we build will also be used after the project. One of us
got contacted by Finaps via LinkedIn for a job long before the BEP started and
they also said that if he needed to do an internship of any kind he could contact
Finaps. That is how we got to Finaps and they were glad to have us to do
our BEP for them, because they had a project waiting for us. Finaps already
wanted to create a decision engine with an actor model before we showed up,
but they did not have enough time to start on it, so they gave us this assignment
and it was approved by the TU Delft.

We enjoyed working on this project and seeing good results very quickly kept
us motivated. Also the supervisor from Finaps was very glad with the progress
and we would like to thank a few people for their help and assistance during
the project. First of all, we want to thank the very kind people at Finaps for
having us and especially our product owner Andrew Hagens. Secondly we want
to thank Casper Poulsen, our TU Delft supervisor, for his help, feedback and
guidance through this project.

M. Acda, T. de Boer & T. Bos
Delft, June 2019

1

Summary

Decision engines can decide from a certain input what the output should be.
This is done in a table with columns for inputs and outputs and rows for a
combination of inputs together with its corresponding output. A row is also
called a rule. A simple program to decide such a decision table can easily be
made, like Camunda. However, when the output of one table is also the input
of another table and so on and the amount of rules get enormously big, the
problem gets more complicated and Camunda takes a very long time to solve
such structures.

We created a decision engine in Scala that can decide the output when there
are thousands of tables linked together in less than a minute with the help of
Akka. Akka is an actor model, which means that it can create multiple actors,
which each can perform a certain task. Actors can run in parallel, which speeds
up the decision engine. Actors send messages to each other and an actor will
only start working when they receive a message. The decision engine reads
DMN files and parses it to tables. For better performance the decision tables
get parsed into a tree structure with for every table the input tables are its
children. In this way the decision engine is very quick in solving tables, however
the parsing into trees still takes some time. This is not a big problem, since the
parsing is only done once and the tree can be saved and the solving can be done
very often. Also the deciding of a single table is improved, because we created
our own FEEL-expressions that can decide the rules very fast.

The result is that after a very large table with 50,000 rules is parsed, the
solving that took Camunda 400 milliseconds only takes 9 milliseconds for the
new decision engine and when the parsing is left out, the new engine is faster in
computing 500,000 rules than Camunda with 1 rule. Also when the parsing is
included in the time, the difference gets only bigger. For 50,000 rules, Camunda
takes 20 seconds to parse the file and solve the table, while the new decision
engine takes only a little more than 1 second to do this all. When the files get
larger, so does the difference.

2

Contents

1 Introduction 5

2 Background 9
2.1 Decision Model and Notation . 9

2.1.1 How DMN works . 10
2.1.2 DMN 1.1 or DMN 1.2 . 10

2.2 Camunda . 11
2.3 Akka . 11

2.3.1 Actor Model . 13
2.3.2 Why Akka . 14
2.3.3 Scala vs Java . 14

3 Problem de�nition and analysis 16
3.1 Requirements as stated by the client 16
3.2 Scope . 16

4 Design and implementation 17
4.1 DRD . 17
4.2 Decision Tree . 17
4.3 Actors . 19

4.3.1 Structure and tasks . 19
4.3.2 Messaging . 19

4.4 API . 20
4.4.1 Input . 20
4.4.2 Output . 21

4.5 Sequence diagram . 22

5 Evaluation 23
5.1 Performance . 23

5.1.1 Performance monitoring 23
5.1.2 Benchmarking against Camunda on varying number of rules 25
5.1.3 Benchmarking against Camunda on varying number of

tables . 27
5.1.4 Speed comparison for different settings of actor model . . 30

3

5.2 Behaviour . 31
5.2.1 Test environment . 31

5.3 Code quality . 32
5.4 Development Process . 33

5.4.1 Scrum . 33
5.4.2 Git . 34
5.4.3 Continuous Integration 34
5.4.4 Problems encountered during development 34

6 Discussion and recommendations 36
6.1 Results . 36

6.1.1 Quality of the comparison 36
6.2 Bottleneck . 37
6.3 Overhead of Akka . 37
6.4 Future work . 37
6.5 Ethical issues . 38

7 Conclusions 39

Appendices 42

A Weekly activities 43
A.1 Week 1 - Research . 43
A.2 Week 2 - Research . 43
A.3 Week 3 - Development . 43
A.4 Week 4 - Development . 43
A.5 Week 5 - Development . 44
A.6 Week 6 - Development . 44
A.7 Week 7 - Development . 44
A.8 Week 8 - Development . 44
A.9 Week 9 - Development . 44
A.10 Week 10 - Development . 44
A.11 Week 11 - Presentation . 44

B MoSCoW 45
B.1 Must haves . 45
B.2 Should haves . 45
B.3 Could haves . 46
B.4 Won't haves . 46

C Speed comparison data 47
C.1 Benchmark between Camunda's program and our program 47
C.2 Comparison between multiple parameters about number of actors 49

C.2.1 One input . 49
C.2.2 30 inputs at the same time 50

4

Chapter 1

Introduction

In current businesses, there are a lot of problems that needs to be decided. The
decision-making is automated to increase the e�ciency. But bigger companies
need to take more and more decisions. To keep up with the increasing amount of
decisions they also need to be made faster. The problem of the existing software
for decision-making is that they are not scalable. When the load becomes too
high, they are not able to decide e�ciently anymore. Therefore, the question
that this project tries to answer is: Is it possible to create a well tested decision
engine for the DMN speci�cation, using the Akka actor system, that performs
very well on a very high load?

The background for this project and all the libraries and tools which are used
during the project will be discussed in chapter 2. The problems to be solved
by this project are stated and analysed in chapter 3 and chapter 4 discusses
the design choices and implementation of the decision engine. The results and
development process will be evaluated in chapter 5. The discussion and future
work recommendations can be found in chapter 6. In the �nal chapter, chapter
7, the conclusion can be found.

Firstly, a brief introduction of what a decision engine does will be provided.
Decision engines are programs that can solve a problem given inputs and deci-
sion tables. It runs the tables on the given input and returns a certain output.
Decision tables consists of multiple rules. The tables require one or more inputs
and matches them with all the rules. If the input matches the rule, the table
will return the output of that rule. In Figure 1.1, a simple table is shown with
2 rules. Every row represents a rule and every column represents an input or
an output.

5

Figure 1.1: A simple decision table with one input \Weather" and one output
\How to dress". [1]

The way a decision engine works is it processes the input, e.g. \Sunny" and
returns the output \T-Shirt". For multiple inputs, outputs and rules it gets
more complicated. With more inputs and/or outputs, the decision table gets
added columns. This is shown in Figure 1.2.

Figure 1.2: A decision table with two inputs and one output. [1]

Similar to the simple table in Figure 1.1, for the table in Figure 1.2 every
row represents a rule and every rule gets evaluated on the inputs. When the
input is \Spring" for \season" and \10" for \guestCount", we can see in the
table that for row 5 the inputs match the values of this rule and therefore the
result that will be returned is \Stew". The output of one table can also be the
input of another table. For example, the \Dish" column in Figure 1.2 can be
the input for a beverage as shown as the �rst column in Figure 1.3.

6

Figure 1.3: The \Beverages' table, which takes the output of the \Dish" table
as an input. [1]

\Beverages" also has an additional input, which is \Guests with children?".
The \Dish" and \Beverages" tables together with the three input variables are
presented in a diagram in Figure 1.4 for a clear overview of how the tables are
solved. Such a diagram is called a Decision Requirement Diagram, in short
DRD.

Figure 1.4: A DRD of two tables and three input variables. [1]

7

A decision engine will solve the DRD in 1.4 by �rst solving the Dish table
with the inputs of \Season" and \Number of Guests". After that it will take
the dish output and solve the \Beverages" table with this output and the input
of \Guests with children?". This table will return the beverages corresponding
to the rules for which the inputs match.

8

Chapter 2

Background

Before going more in depth about the problems and features of this project, some
background information is provided in this chapter. Di�erent technologies will
be discussed that were used to develop the �nal product. First of all the Decision
Model and Notation is explained and why it is important for our project. After
that the platforms Camunda and Akka will be discussed in more detail. Finally
the reason why this project is coded in Scala instead of Java will be explained.

2.1 Decision Model and Notation

Decision Model and Notation (DMN) provides a construct to model decisions,
so that they can be understood by business analysts, technical developers, etc.
[2]. DMN bridges the gap between business decision design and decision imple-
mentation.

9

Figure 2.1: An example of a Decision Requirements Diagram (DRD). [3]

2.1.1 How DMN works

DMN provides a speci�cation to create so called Decision Requirement Diagrams
(DRD). These diagrams consist of the following elements [4]:

� Input data: represents an input. (e.g. \Person" in Figure 2.1)

� Decisions: gives output from a number of inputs. The output is deter-
mined by a set of rules depicted in a table. (e.g. \Address Veri�ed" in
Figure 2.1)

� Business Knowledge Model (BKM): functions providing logic for multiple
decision elements.

� Knowledge Source: describes the way decisions are made and how it uses
the input data. (e.g. \AML Regulations" in Figure 2.1)

Each decision is composed of a set of rules depicted in a table. An example
of a decision table can be seen in Figure 2.2.

2.1.2 DMN 1.1 or DMN 1.2

The latest version of DMN is version 1.2 which came out in January 2019 [2].
Version 1.2 improves over version 1.1 in that it generally adds more exibility in
the creation of DRDs, but does not add any big features that set both versions
apart [5]. Because of the existence of a DMN parser for DMN version 1.1 and

10

Figure 2.2: An example decision table [3]. This table has three inputs, one
output and six rules. If, for instance, the inputs are \Private" for \Client
Type", $30000 for \On Deposit" and \Medium" for \Estimated Net Worth",
then the output of this decision will be \Personal Wealth Management".

not for 1.2 (which will be discussed in section 2.2), we opted to use DMN version
1.1.

2.2 Camunda

Camunda is an open source platform for workow and decision automation that
brings business users and software developers together [1]. With Camunda you
can make your own DRDs, parse and execute them, but we only used Camunda
to create DRDs for testing and benchmarking. Camunda has written their code
base in Java and builds on the older spec version DMN 1.1. It is important to
note that the Camunda DMN parser ignores Knowledge Sources and BKMs as
they are optional.

The main problem with Camunda is that Camunda is very slow in solving
DRDs and especially in solving multiple DRDs at the same time with di�er-
ent inputs. From inspection of the base code [6], mostly by debugging actual
evaluation runs, it was deduced that no concurrency is used in the calculating
of results. This can be seen in the code snippet in Figure 2.3. Therefore, this
project aims to create a system based on the actor model to provide concurrency
and therefore higher throughput than the Camunda counterpart.

2.3 Akka

The Akka library is a toolkit for building highly concurrent, distributed, and re-
silient message-driven applications for Java and Scala and is an implementation
of the actor model on the Java Virutal Machine (JVM) [7].

11

1 p u b l i c DmnDecisionResult e v a l u a t e D e c i s i o n (DmnDecision
d e c i s i o n , Var iab leContex t va r i ab leCon tex t) f

2
3 i f (d e c i s i o n . getKey () == n u l l) f
4 throw LOG. unableToFindAnyDecisionTable () ;
5 g
6 VariableMap var iableMap =

bui ldVar iableMapFromVariableContext (va r i ab leCon tex t) ;
7
8 L is t < DmnDecision > r e q u i r e d D e c i s i o n s = new

ArrayL is t < DmnDecision > () ;
9 bu i l dDec i s i onT ree (d e c i s i o n , r e q u i r e d D e c i s i o n s) ;

10
11 L is t < DmnDecisionLogicEvaluat ionEvent > eva lua tedEvents =

new ArrayLis t < DmnDecisionLogicEvaluat ionEvent > () ;
12 DmnDecisionResult eva lua tedResu l t = n u l l ;
13
14 f o r (DmnDecision e v a l u a t e D e c i s i o n : r e q u i r e d D e c i s i o n s) f
15 DmnDecis ionLogicEvaluat ionHandler hand le r =

ge tDec is ionEva lua t i onHand le r (e v a l u a t e D e c i s i o n) ;
16 DmnDecis ionLogicEvaluat ionEvent eva luatedEvent =

hand le r . eva lua te (eva lua teDec i s i on ,
var iableMap . asVar iab leContex t ()) ;

17 eva lua tedEvents . add (eva luatedEvent) ;
18
19 eva lua tedResu l t =

hand le r . g e n e r a t e D e c i s i o n R e s u l t (eva luatedEvent) ;
20 i f (d e c i s i o n != e v a l u a t e D e c i s i o n) f
21 addResul tToVar iab leContext (eva lua tedResu l t ,

variableMap , e v a l u a t e D e c i s i o n) ;
22 g
23 g
24
25 genera teDec is ionEva lua t i onEven t (eva lua tedEvents) ;
26 re tu rn eva lua tedResu l t ;
27 g

Figure 2.3: The method which is used to evaluate decisions in the Camunda
code base [6]. The decision table is represented asdecision and the inputs
are stored in variableContext . When decision needs to be evaluated, the
decision engine �rst extracts the required decisions in line 8 and 9, and then
evaluates them one by one in the for-loop from line 14 to 23. This means the
evaluation of decision tables happens sequentially rather than concurrently.

12

2.3.1 Actor Model

The Actor Model is a conceptual model to deal with concurrent computation
[8]. Every actor is isolated, so multiple actors can act at the same time. Actors
can send messages between each other and every actor has a `mailbox' where
it stores messages when it is processing another message as is shown in Figure
2.4. The actor model also provides fault tolerance, as the crashing of one actor
does not mean that the whole system fails. Actors in the system can act upon
the failure of other actors [9].

Figure 2.4: The Actor Model with 3 actors. [8]

The messages are used for communication between actors, because actors
do not share their state [9]. All information that is shared is via messages only.
Actors have the ability to do three things [8]:

� Create more Actors

� Send messages to other actors

� Designate what to do with the next message

The �rst two bullet points are very straightforward, but the last one is more
complicated. When an actor receives a message, it can alter its own state. In
this way for the next message, the state will be di�erent. For example when
the state of an actor is 0 and it receives a message withadd(1) , for the next
message it receives, the state will be 1.

13

2.3.2 Why Akka

We choose Akka as our actor framework, because it has high performance and
it lets us build a system that can scale by using multiple servers. Akka is able
to distribute tasks in di�erent threads and run those in parallel, therefore the
e�ciency increases and there is a signi�cant speed-up. The creation of the actors
and sending and retrieving of messages comes with an overhead. However, Akka
has been proven to be signi�cantly faster than 4 other actor models [10] and
has the least overhead of all, because it runs directly on the JVM.

Messages

Messages are used to send data between actors asynchronously, where the data
can be of any type, but it must be immutable [7]. Akka has two types of
messages, Ask and Tell messages. A Tell message sends the data, and that's it.
The Ask message also creates a return object which encapsulates the possible
reply. When it is ready, the reply can be extracted from it. Separate actions
can be speci�ed for when the reply was succeeded (the return object is given)
or failed (an exception is thrown). This makes the Ask message easier to work
with, but also creates some overhead. The messages between actors makes Akka
a perfect tool for our decision engine. How these messages are implemented will
be explained in Section 4.3.2.

Actor Hierarchy

Another advantage of Akka is that it has a built in fault tolerance model which
allows applications to fail and recover as soon as possible [9]. All actors are
structured in an actor hierarchy which looks like a tree. Every actors parent
also acts as a supervisor actor, which gets noti�ed if an actor crashes [8]. The
supervisor can do something about it to return the actor to a consistent state
again (e.g. returning it to its initial state).

2.3.3 Scala vs Java

We had the option to write our program in Scala or in Java, because Akka has an
API for only those two languages. Our choice is to use Scala, because we believe
that Scala has some nice bene�ts over Java. An empirical study has shown that
Scala code is more compact [11]. Moreover, developers say that Scala is so much
more than Java thanks to its expressive type-system [12] and Scala is both an
object-oriented and functional programming language. The performance is also
an important aspect when choosing the programming language, but the API
performance of Akka should not di�er for both languages. Therefore neither
one is much better for the API. But besides the API, Scala should run about
20% faster than Java according to a benchmark on sorting 100.000 items 100
times by writing similar code for both languages [13].

A huge bene�t for this project in particular are Monads, which are objects
that wrap values of any type. For example the Option object that allows a

14

value to be Some(value) , where value can be of any type, or Noneis used a
lot. In particular the Scala Future compared to a Thread in Java is a great
advantage of Scala [14]. Both are used to run code in parallel. AThread does
not have a return type while a Future is an object that holds a value that does
not yet exists but which may become available at some point. This is used a
lot with sending return messages to the parent actor from child actors, that
run concurrently. The actor structure and messaging of this project is further
explained in section 4.3.

15

Chapter 3

Problem de�nition and
analysis

This chapter discusses the requirements as stated by the client and the scope in
which this project needs to be created.

3.1 Requirements as stated by the client

The requirements for this project are to create a decision engine that performs
very well on a very high load with multiple inputs at the same time. It has
to be an improvement over the existing decision engine software by Camunda
[1] by being faster and concurrent. Furthermore, it should use the Akka actor
model to provide that needed concurrency. The decision engine should be able
to use at least the DMN 1.1 spec.dmn �les and it should be able to be callable
by API. It should then accept input in the format:

f dmnId:[dmnId],[param1]:[val1],[param2]:[val2],... g

The API should then return the computed result and a representation of the
decisions made to arrive at said result.

3.2 Scope

The Decision Engine is supposed to run continuously and it must be callable
by API. A big requirement for the solution is to be simple but e�ective and
the focus is not laid on the front-end but rather on the back-end where the
computations are done, and these computations need to be done with very
high throughput. This means that the decision engine will not feature a user
interface. It should, however, be able to output a representation of the way the
output was generated in the decision engine. A MoSCoW representation of the
requirements and scope can be seen in Appendix B.

16

Chapter 4

Design and implementation

In order to arrive at an implementation which satis�ed the requirements, a
number of design decisions had to be made. In this chapter, the workings of
each component and the reasoning behind the design are given.

4.1 DRD

The DRDs used as input to the system are stored in.dmn �les. These �les
are used by Camunda and represent DRDs in XML form and can be generated
using the Camunda Modeler [15]. Due to the XML structure they can easily be
interpreted and converted into decision trees.

4.2 Decision Tree

In order to solve a DRD using actors, the choice was made to �rst convert
it into a decision tree. The tree is constructed by taking the output decision
tables as nodes and appending their inputs as child nodes and then continuously
add inputs to decision tables until an input element is reached. The result of
converting the DRD in Figure 4.1 to a decision tree is shown in Figure 4.2.
The advantage of using decision trees is that each tree branch can be solved
concurrently without requirements from parallel branches. As you can see in
Figure 4.2, some tables occur multiple times in the tree, because they are an
input of di�erent tables. This will not take more memory, because the same
tables point to the same memory address, which will also make the solving of
the tables faster. When the table has been solved once, the output is saved and
will be used at all other places in the tree.

17

Figure 4.1: An example DRD.

Figure 4.2: The decision tree from the DRD from Figure 4.1

18

4.3 Actors

In order to achieve concurrency the Akka actor system is used. In this framework
actors are structured in a hierarchy and communicate by sending messages to
each other. An actor performs an action as a reaction to each message it receives.

4.3.1 Structure and tasks

In this project the actor hierarchy consists of two branches: the parsing branch
and the solving branch. This can be viewed in Figure 4.3. The parsing branch
handles the parsing of the DRDs into decision trees and the solving branch
handles the evaluating of decision trees on input. TheParserSupervisor and
the SolverSupervisor actors handle communication with the Master actor
and monitor their children, the Parser and TreeSolver actors. Parser actors
parse DRDs into decision trees with the help of theOutputNodeFinder and
InputNodeFinder actors. TreeSolver actors evaluate decision trees on input
and makes use ofElementSolver actors which evaluate individual decision tree
elements on the given input values.

Figure 4.3: The actor hierarchy.

4.3.2 Messaging

The Master actor receives SolveDrdRequest(drd, input, save, refresh)
messages from the decision engine, asking it to solve a given DRD on an in-

19

put. The Master then checks whether the given DRD has already been parsed
into a decision tree. If not, or if the Master is asked to refresh the decision tree,
it will send a ParseRequest(drd, save) message to theParserSupervisor
actors requesting it to convert a DRD into a decision tree. The ParserSu-
pervisor actor will then allocate one of its child actors, the Parser actors, to
convert the DRD. The Parser actor will �rst split the list of all tables in multi-
ple chunks and sends for each chunk aFindOutputRequest(chunk, inputIds)
to the OutputNodeFinder actors to �nd the output tables of the tree. inputIds
is a list with all the inputId s of all the tables together. TheOutputNodeFinder
actor will check for every table in the chunk if they have an outputId that is
contained in the inputIds . It will return a FindOutputReturn(nodes) , where
nodes is a list of all the tables that are not an input of another table. After
that the Parser actor will send for each node in the tree and for every chunk a
FindInputRequest(chunk, ids, children) to the InputNodeFinder actors.
The ids and children are the input ids and the list of children of the current
node. The InputNodeFinder actor will �nd all the input tables of a node and
will send a FindInputReturn when it is �nished. When this is done and the
save parameter of the ParseRequest is true, it will save the decision tree to
disk. Finally, it will send back a ParsingReturn(decisionTree) which the
ParserSupervisor will forward to the Master.

The Master then sends aSolveRequest(decisionTree, input) message
to the SolverSuperviser actor which it forwards to one of its child actors, the
TreeSolver actors. They will solve the decision tree with the given input by
solving the decision tree from the ground up, solving individual decision tree
elements one by one by sendingSolveTableRequest(element, input) mes-
sages to one of its child actors, theElementSolver actors. They will then
solve a single decision tree element and return the result in aSolveElemen-
tReturn(output) message. TheTreeSolver actor will collect the outputs and
when the decision tree is solved it will send aSolveReturn(output) message
to SolverSuperviser actor which it will forward to the Master actor. The
Master actor then returns the SolveReturn(output) to the decision engine.
This messaging can also be viewed in Figure 4.4.

4.4 API

The interaction with the decision engine is done via an API. This way, it can
be hosted on a server and be accessed via HTTP GET requests. These requests
are in JSON form which allows easy integration into other software. The DRDs
are stored locally on the server.

4.4.1 Input

The format of the HTTP GET request to the API is as follows:

[address]:[port]/decision engine?input=[DecisionEngineInput]

20

where [DecisionEngineInput] has the form:

1 f
2 dmnId : dmnId ,
3 param 1 : va l 1 ,
4 param 2 : va l 2 ,
5 . . .
6 param n : va l n
7 g

Furthermore, multiple [DecisionEngineOutput] can be appended after each
other to do a batch calculation.

4.4.2 Output

The output of the API is a JSON list containing the results of each batch input.
Each result is a list of table output objects. A table output object lists the table
id, the output values and the input tables, which, again, is a list of table output
objects. A structural view of the output looks like this:

1 [
2 [// Resu l t 1
3 f // Output 1
4 t a b l e I d : ou tpu t t ab l e 1 ,
5 ou tpu t va lues : [va l 1 , va l 2 , . . . , va l n] ,
6 i npu ts : f t ab l e 1 , t ab l e 2 , . . . , t a b l e n g
7 g ,
8 f // Output 2
9 t a b l e I d : ou tpu t t ab l e 2 ,

10 ou tpu t va lues : [va l 1 , va l 2 , . . . , va l n] ,
11 inpu ts : f t ab l e 1 , t ab l e 2 , . . . , t a b l e n g
12 g ,
13 . . .
14] ,
15 [// Resu l t 2
16 f // Output 1
17 t a b l e I d : ou tpu t t ab l e 1 ,
18 ou tpu t va lues : [va l 1 , va l 2 , . . . , va l n] ,
19 inpu ts : f t ab l e 1 , t ab l e 2 , . . . , t a b l e n g
20 g ,
21 f // Output 2
22 t a b l e I d : ou tpu t t ab l e 2 ,
23 ou tpu t va lues : [va l 1 , va l 2 , . . . , va l n] ,
24 inpu ts : f t ab l e 1 , t ab l e 2 , . . . , t a b l e n g
25 g ,
26 . . .
27] ,
28 . . .
29]

21

	Introduction
	Background
	Decision Model and Notation
	How DMN works
	DMN 1.1 or DMN 1.2

	Camunda
	Akka
	Actor Model
	Why Akka
	Scala vs Java

	Problem definition and analysis
	Requirements as stated by the client
	Scope

	Design and implementation
	DRD
	Decision Tree
	Actors
	Structure and tasks
	Messaging

	API
	Input
	Output

	Sequence diagram

	Evaluation
	Performance
	Performance monitoring
	Benchmarking against Camunda on varying number of rules
	Benchmarking against Camunda on varying number of tables
	Speed comparison for different settings of actor model

	Behaviour
	Test environment

	Code quality
	Development Process
	Scrum
	Git
	Continuous Integration
	Problems encountered during development

	Discussion and recommendations
	Results
	Quality of the comparison

	Bottleneck
	Overhead of Akka
	Future work
	Ethical issues

	Conclusions
	Appendices
	Weekly activities
	Week 1 - Research
	Week 2 - Research
	Week 3 - Development
	Week 4 - Development
	Week 5 - Development
	Week 6 - Development
	Week 7 - Development
	Week 8 - Development
	Week 9 - Development
	Week 10 - Development
	Week 11 - Presentation

	MoSCoW
	Must haves
	Should haves
	Could haves
	Won't haves

	Speed comparison data
	Benchmark between Camunda's program and our program
	Comparison between multiple parameters about number of actors
	One input
	30 inputs at the same time

